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Abstract

Interactive Style Transfer for Data Visualization and Data Art

by

Mahika Dubey

This thesis discusses Data Brushes, an interactive web application to explore neural

style transfer using models trained on artistic data visualizations. The application

invites casual creators to engage with deep convolutional neural networks to co-create

custom artworks with a focus on style transfer networks created from canonical and

contemporary works of data visualization and data art to demonstrate the versatility

and flexibility of the algorithm. In addition to enabling a novel creative workflow,

the process of interactively modifying an image via multiple style transfer networks

reveals meaningful features encoded within the networks, and provides insight into the

e↵ects particular networks have on di↵erent images, or di↵erent regions within a single

image. To evaluate Data Brushes, we gathered expert feedback from participants of a

data science symposium and ran an observational study, finding that our application

facilitates the creative exploration of neural style transfer for data art and enhances user

intuition regarding the expressive range of style transfer features. This thesis explores

both the practical uses of such tools for artists as Data Brushes and the interpretive

uses of creating such venues for accessibility to computational art, remixing the purpose

of data visualizations to be more than just graphical representations of information.
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Chapter 1

Introduction

Neural style transfer is an algorithm involving the encoding of an image-to-

image function which minimizes some loss function relative to a source ‘style image’

for a given target ‘content image’. In this way, a trained neural network is used to

extract a feature space from a chosen source style image, and apply those features to

the target content image, such that the content image is embellished with those features,

thus emulating the style [17]. This thesis describes Data Brushes, a novel web-based

application that encourages users to interactively explore the creative possibilities of

style transfer in several ways. Neural style transfer was originally popularized through

the imitation of iconic works by famous early 20th Century painters such as Van Gogh

and Picasso, and Data Brushes further incorporate styles learned from seminal works

of data visualization and analysis by Charles Minard and Edward Tufte, and from data

art created by influential data designer Giorgia Lupi. The decision to focus on data art

was made to promote visualization as a viable form of artistic expression, as well as to
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Figure 1.1: A series of style transfer data brushes applied to an image from Kelley’s
Airportraits project. a shows the original image without any styling, b shows the image
styled with the Bruises brush (Lupi and King), c uses the Hennessy brush (Lupi, Maeda,
and King), d is styled using our Flatland brush (generated from an image analyzed by
Tufte), e is styled using a brush generated from one of Lupi’s experimental scrapbook
pieces, f showcases styling with the data brush based on Lupi’s Data Items, and g
demonstrates the result of layering multiple data brushes (including brushes created
from visualizations by Minard).

generate discussion about additional extensions of style transfer applications. Figs. 1.1

and 1.2 show examples of a target image by Mike Kelley [13] manipulated using various

styles transfer brushes generated by the application.

Data Brushes makes it easy to create complex data art collages by interact-

ing with a digital canvas that transforms source images using predefined or custom

data art styles. By facilitating creative manipulation, Data Brushes provides users—

both casual creators [9] and computational researchers— with a way to interrogate the

very feature sets isolated through the style transfer training process, enabling them to

playfully interact with an AI medium, and creating a deliberate conflation of visual

analysis and new media creation [37]. Two interactive modes, magic markers and com-

positing stamps, enable users to evaluate the e↵ect of style transfer functions on their

3



Figure 1.2: A comparison of the e↵ects of styling the same target image with di↵erent
data brushes. Here, we use the same brushes used in Fig. 1.1, but now each is applied
to the exact same region of Kelley’s photo (Fig.1.1d).

own images in di↵erent ranges of detail and localized e↵ect, without requiring advanced

technical or programming knowledge. The remaining chapters in Part I, Background,

contextualize Data Brushes in terms of previous investigations of style transfer and

sketch-based interfaces, including existing canvas-based applications for computational

and machine learning art. Part II, Application Design, describes the developed system

in detail, expanding on design decisions, the process of model training, and providing

visual evidence to demonstrate the expressive range of our style brushes via the two

available modes. And finally, Part III, Discussion and Analysis, summarizes the expert

feedback collected from data scientists, presents details and insights from the observa-

tional study sessions, and discusses how Data Brushes facilitates new creative roles at

the intersections of art, curation, and data visualization, introducing new questions that

arose during the development of this project, and outlining plans for future iterations

of the application.
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Chapter 2

Related Work

2.1 Style Transfer

Style transfer refers to the method of integrating the distinct features of a

source image into the existing content of a target image, transforming, to take a common

example, a photograph of a landscape (the target image) into a new image that looks like

an Impressionist painting (the source image), as depicted visually in Fig. 2.1. Inspired

by the function and structure of biological neurons in the human brain, deep neural

networks are constructed and trained to mimic visual recognition and understanding,

and are trained to encode the visual features of a single source image [12, 23]. In

general, a successful style transfer should transfer visual properties of the source image

without altering the spatial layout and structural information of the target image it is

being applied to. The alternating convolutional and subsampling layers of the models

reproduce strokes, palette choices, and other perceptual properties of the style image,
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Figure 2.1: A simple example demonstrating the result of style transfer using a content
image of a palm tree at sunset being rendered in the style of the target image, the
painting Udnie, Young American Girl by artist Francis Picabia [30]

in particular where similar features are present in or implied by the content image.

While multiple algorithms have been developed over the past few years, Data

Brushes uses the approach pioneered by Gatys et al. [17], which encodes the feature

space of a source image using the VGG 19 neural network, which has a deep architecture

with 16 convolutional layers and 5 pooling layers [35]. The VGG 19 neural network

is initially trained on ImageNet to learn general feature encoding, then generates a

model that captures the specific features of the style image. This model is then used to

transform user selected input regions on our digital canvas. Fig. 2.2 presents a flowchart

that provides an overview of the process specifically used in Data Brushes for applying

trained networks to new content.

2.2 Canvas Applications

With digital technologies and interfaces becoming increasingly rich, many

canvas-based tools for artists are available, inspired by the pioneering work of Suther-

land’s Sketchpad [38], as well as by more contemporary systems [34, 29]. The direct

6



Figure 2.2: A high-level overview of the style transfer algorithm used in theData Brushes
application. Given a source ‘style image’, a model is trained through a VGG 19 net-
work in order to generate an image-to-image function which will compress the primary
features of any input ‘content image’ (minimizing loss relative to the style image), and
then expand the content image into a new composition that retains the overall spatial
layout of the target image, while adding the stylistic elements learned from the source
image.

manipulation a↵ordance promotes user interaction with abstract functions, extending

traditional mediums of 2D art making. These kinds of interactions closely follow the

concept of a ‘magic lens’ in which clicking actions are used to place small filters on

digital images to change the underlying content [5]. Yet despite the simplicity of such

interactions, computational art and creative coding are too often inaccessible to less

technical users. This gap is reduced through the development of applications that make

algorithms interactive, such as sketch-based interfaces that incorporate a pen or brush

metaphor that lets users to manipulate pixels with ease [3, 15, 19, 22].

Jacobs et al.[20] explore this technique in their procedural illustration tool

Para, providing a drawing environment for artists that includes interactive brushes with

unique and customizable designs and styles, specifically adapting techniques (including

symmetries and particle systems) from procedurally-generated art [16, 28]. Their ex-

pert evaluations support the usefulness of such a software system for artists to gain

7



control of algorithms. Expanding on tools for computer-assisted art, applications aimed

at casual creators for photo editing and image filtering have been augmented using style

transfer [33]. While many popular image e↵ects such as color enhancement and vintage

styling can be accomplished through simple pixel manipulations, style transfer can pro-

vide uncannily e↵ective results when emulating an artist’s work. For example, a recent

mobile style transfer application by Reimann et al. [31] called MaeSTrO extends this

style transfer functionality by enabling users to apply multiple styles onto distinct, user-

selected, masked areas of an image. In MaeSTrO, the user is directed to produce a layer

of semantic annotation, as is sometimes used in non-ML style transfer [11]. Bau et al.’s

GANPaint Studio provides direct interaction with neural networks by using brushing

on a canvas to insert or remove physical features from an image by manipulating un-

derlying generative networks [4]. Their approach, unlike the one used in Data Brushes,

is to apply texture synthesis over the entire canvas based, using spatially localized edits

to the low-dimensional structure that are observed by a narrow, intermediate layer of

their network. By contrast, neuronal activations (in the compositing stamps mode) are

varied in Data Brushes by changing the local domain that the networks are exposed to.

These approaches, and others like them [21], have been used to develop ap-

plications that encourage the casual consumption of style transfer as a form of artistic

expression. Data Brushes encourages users to create compositions interactively using

a palette of style transfer networks, providing di↵erent modes for applying styles onto

a single image. As described in later sections, the Data Brushes style transfer brushes

are responsive both to the artist’s manual input and the strokes and patterns observed
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by a convolutional neural network.
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Part II

Application Design
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Chapter 3

Implementation and Interaction Modes

Data Brushes o↵ers users two distinct modes that allow users to experiment

with applying the styles of di↵erent famous data visualization artists onto an image of

their own choosing. Fig. 3.1 presents an overview that illustrates the processing flow of

each mode, which are described in more detail later in the thesis (in Chapters 3.1 and

3.2). The front-end interface, as shown in Fig. 3.2 makes use of layered HTML5 canvases

as well as the D3.js library [6]. The back-end is built using ml5.js [1], a machine learning

package built for the web on top of the TensorFlow.js library [36] that aims to improve

the availability of common machine learning algorithms for developers and creative

professionals of varying backgrounds. While ml5.js’s pre-trained examples provide high

quality results, the relationship of each painting to its ‘perceptual loss’, visible in the

trained style model, can be di�cult to interpret. In developing Data Brushes, this

perceptual loss is exposed as a form of real-time evaluation of the e↵ectiveness of a

brush when applied to features in a particular target image, giving users a tool that is
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Figure 3.1: An overview of application design in each mode, as described in Chapters
3.1 and 3.2. The user is given control over style brushes of their choosing. Left: The
user controls which regions of the composition it can e↵ect, using a magic marker to
reveal pre-computed styled layers underneath the image. Right: The user controls
which regions it is a↵ected via a compositing stamp that uses only features local to that
selected area to transform the image in post, unaware of other features in the rest of
the image. In both modes, the results are integrated into the content image, preserving
their spatial context.

both exploratory and experiential, and making it possible to understand the mechanics

behind the feature extraction algorithm.

Thematically, Data Brushes pushes beyond traditional painterly style transfer

by instead training on data art made by data visualization experts and artists, including

Giorgia Lupi, Charles Minard, and Edward Tufte, as displayed in Fig. 3.3 (and described

in more detail in a following chapter on default brushes). Using the GPU cluster on

Paperspace’s cloud infrastructure, the initial training of a network to encapsulate the

features of each image takes approximately 4-6 hours, depending on the size of the input.
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Figure 3.2: A screenshot of the interface of Data Brushes in magic markers mode.

The system lets users create new style transfer networks (i.e., new data brushes), and

once trained, the networks can be queried within a few milliseconds, enabling interactive

exploration. While each of the two modes provides a slightly di↵erent set of interactions

with the style models, both encourage the user to explore the subtle di↵erences in applied

styles. By observing how each brush tends to transform particular patterns, lines, or

colors within the target image in characteristic ways, a user can become familiar with

the behaviors of the brushes and can begin to use them more skillfully and expressively.
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Figure 3.3: Examples of source images used to train some of our custom models. These
original data visualizations and data art from Giorgia Lupi, Charles Minard, and Edward
Tufte are used for a breadth of e↵ects, and users can train their own custom style
networks to add brushes to the Data Brushes application.

3.1 Magic Markers

The magic markers mode uses natural brush interactions so that users can

‘paint’ on di↵erent styles through simple selection and dragging. Usage of the appli-

cation mimics the physical space of a painter with a palette of ‘styles’ (rather than

colors), and includes undo functionality to revert recent changes to the canvas. A set

of thumbnail images, as seen in Fig. 3.2, shows the available pre-trained models.

In this mode, all potential styled images are pre-computed and stored in hidden

canvas layers aligned with the main canvas image. Clicking on one of the buttons copies

14



Figure 3.4: This figure illustrates the relationship between color and stoke features that
can emerge when applying a style brush to an image. Using the magic marker mode
with the source brush generated from the Scrapbook1 image (top right), the coloration
of the resulting image (bottom) is highly dependent on the direction of the lines in the
black-and-white target image (top left). Orange shades begin to appear at the center of
the flower, while the darker purples only appear as the angle of the flower’s petals are
close to the horizontal, replicating the exact usage of the colors as seen in the source
image.
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the styled image onto the hidden layer stored immediately below the main image. Brush

selections can then be made on the canvas, and dragged around or reshaped as needed to

reveal the styled image in the painted areas, unmasking the styled content by removing

pixels from the top layer in real time. Painted sections are applied to the main canvas

upon the click of the ‘Apply Brush’ button, which flatten the layered canvases into a

single image. If changes have not been applied yet, the ‘Clear Brush’ can be used to

remove any un-applied ‘paint’ by resetting the top canvas layer through the reversal

of the pixel removal. Based on the varied size of the brush, users can change their

level of details for di↵erent features, adding an additional level of customization to the

co-creation process.

A limitation of solely implementing this approach is that multiple styles can

not be layered on top of each other. Painting a new style over an already styled portion

of the image replaces the content with the new style, instead of incorporating the e↵ects

of the old style onto the new styled image. Thus, themagic markers implementation also

includes a multi-layering option to recursively style an image. Since this is inherently

more computationally expensive, these multi-layering paint brushes can introduce a

delay of up to 10 seconds when applying the style model to the hidden background

canvas when using a consumer laptop without a dedicated GPU. However, this delay

is greatly minimized on desktop computers with fast GPUs (less than 1 second on a

workstation with an Nvidia GeForce RTX 2080 Ti). Once loaded, these layering brushes

can style already-styled content, enabling a user to develop unique combinations of the

features spaces of multiple di↵erent visualizations or artists. Figs. 1.1, 1.2, 3.4, 3.5, and

16



Figure 3.5: Comparison of Scrapbook 2 (top row) and Immigration (bottom row) styles
applied directly to the black-and-white test glyph at the bottom of the figure. The
test glyph contains a range of geometric primitives in varying rotations, enabling us
to observe how a style brush a↵ects di↵erent features in a target image. The left
column uses the magic markers mode with a single marker, applying each style to the
entire image. The right column uses the compositing stamps mode with one stamp
applied to the image many times, using the features local to the currently selected area.
Note how the chevrons darken di↵erently in each mode, how the ‘ring’ and ‘moon’ are
transformed, how the compositing stamps mode introduces interesting border artifacts,
and how overall there is an increased density of dramatic contrast which is introduced
by our system as the style transfer network normalizes input values.
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5.1 present examples created using Data Brushes in magic markers mode.

3.2 Compositing Stamps

In contrast to the pre-processing approach used in the magic markers mode,

the compositing stamps mode uses instant post-processing of small selected areas of an

image to layer ‘style patches’ to create interesting outputs resembling tiled mosaics or

collages. Users can select di↵erent rectangular sections of their image of choice and

immediately transform localized content based on the selected style. Unlike in the

magic markers mode, image size is not scaled down in this mode, as the rapid selection

of small rectangular areas reduces the computational load on the browser, especially on

machines without GPU support.

Composting stamps simulates the physical application of stamps colored with

paint. Once a brush is selected, the user isolates a rectangular patch on the canvas

through a click-and-drag operation. Upon mouse release, this patch will then be im-

mediately replaced with a stylized version of the original content, applied only to that

selected region. A patch of any size can be ‘stamped’. A button labeled ‘Apply Brush’

merges the changes on the preview canvas to the main canvas, so that a user can then

add additional layers of style on top of the transformed canvas. Pressing ‘Clear Brush’

removes the brush box from the canvas area, and pressing ‘Clear Image’ removes any

changes on the preview layer that haven’t yet been applied to the main canvas.

This mode is especially useful for interpreting what features are encapsulated

18



Figure 3.6: Here we show an example of how a user can probe the features of two of the
default style brushes, Scrapbook 2 (left) and Immigration (right), using the compositing
stamps mode. A simple black-and-white test glyph is used as the target image (bottom),
which contains simple symmetrical features. In the output shown on the left, horizontal
‘grating’ tends to occur on dark horizontal features, but will also sometimes occupy
white areas where there is an absence of features. Interestingly, dark vertical lines are
shaded orange in some regions, even though this color is not dominant in the original
source image.
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within a style transfer network, and for observing the interaction of style brushes on

particular target images. By sending rectangular selections of the digital canvas directly

to the style transfer algorithm, we can also study the trained network on a continuous

deformation of content (see Fig. 3.6 for an example comparing two di↵erent brushes

using this method of iterative deformation to accentuate features). This interactive

process reveals the artifactual texture of the network, for instance in its response to

boundaries and aspect ratios created by the successive application of small stamps.

This mode exposes the style transfer network’s expressive range when used to transform

local regions. (See Fig. 3.5, right, which depicts an investigation of how smaller stamps

generate interesting textures.)

3.3 Network Details

The models in this implementation of Data Brushes consist of a VGG 19

network comprising of 3 convolutional layers (representing kernels), 5 pairs of convolu-

tional layers (representing a di↵erence between kernels), 2 transpose layers (representing

stamp-like patterns of application of kernels), 1 more convolutional layer, and a final

activation and normalization step [35]. Every layer in the large 19 layer convolutional

VGG network structure produces a di↵erent filter response. A representation of artistic

style in an image is built by combining the correlations between these responses over the

entire image [18]. Figs. 3.5 and 3.6 present examples of the trained networks applied to

individual features of a basis image comprised of geometric primitives, demonstrating

20



the baseline behavior of the network. With no content image to warp, the produced

imagery is a useful snapshot to understand the general color scheme and default stroke

patterns used by the style.
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Chapter 4

Default Brushes

Traditional style transfer interfaces often use famous works by painters with

distinct, easily recognizable styles, such as Picasso, Kandinsky, and Van Gogh [17].

Given the motivation to improve accessibility to computational art for casual creators

and artists, while also providing insight into the internal behavior of a style transfer

network, Data Brushes provides users with brushes based on data visualization and

data art works that emphasize the role of aesthetics and visual design in representing,

communicating, and analyzing data. Data Brushes is an initial attempt at exploring

these artistic features involved in visualizing data, demonstrating the flexibility of the

style transfer algorithm and promoting the usage of such novel pieces in computational

applications. Though the system supports the creation of style brushes from any image,

Fig. 3.3 shows thumbnails of some of the images used to train the models provided

by default in Data Brushes. The distinct visual features for these default brushes is

explained below, providing context for the reasoning for choosing this selection:
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• Bruises, by Giorgia Lupi and Kaki King: This piece tracks the progression and

treatment of the daughter of Kaki King (a musician and long time collaborator

of Giorgia Lupi) through an auto-immune disease called Idiopathic Thrombocy-

topenic Purpura (ITP) [26]. The piece is an example of empathetic data visual-

ization, a key motivation in Giorgia Lupi’s recent work in data humanism.

• Hennessy, by Giorgia Lupi, John Maeda and Kaki King: This visualization was

part of a project to re-branding Hennessy’s V.S.O.P Privilege on the 200th an-

niversary release of the cognac [27]. The piece combines information collected

on Kaki’s musical composition process during her trip to Cognac and traditional

chalk patterns used in marking aging cognac barrels over time. Given the many

interesting small details present in the image, we focused on a zoomed-in selection

to train our data brush. The colorful vertical lines and the small notations and

markings in black stood out as features most visible in styled content.

• Scrapbook1, by Giorgia Lupi: Giorgia Lupi spends significant time contemplating

ideas for visual representations. These works are generally abstract, as she exper-

iments with creative approaches to visualizing future datasets of interest, and are

often posted by Lupi on her personal website and Instagram account [25]. This

data brush produced the most varied colors, creating interesting and intuitive

mapping of stroke direction to color [25].

• Scrapbook2, by Giorgia Lupi: Another creative data visualization sketched out by

Giorgia Lupi in her set of Data Viz Scrapbooks [25]. We select the images we

23



felt produced the most interesting and new style features. This image used a lot

of horizontal and vertical line elements, and the color associated with each are

apparent when used on a content image with structural similarities.

• Data Items, by Giorgia Lupi: This piece is from a larger work made for an exhi-

bition at the Museum of Modern Art in New York on the evolution of culturally

important fashion and accessories over the last few centuries [24]. Similar to the

Hennessy piece, we used a cropped selection of the original image so that our fea-

ture extractor could use the small details in the visualization. The colorful circles

used to highlight items in the visualization were the primary item used to style

any sort of content image, with the position of the text element being preserved,

creating musical-note looking artifacts when brushing over new images.

• Flatland, a piece examined by Edward Tufte: This image was taken from Tufte’s

analysis of designing visualizations for flat interfaces such as paper or a screen [39].

He uses the image, a map from a Japanese travel guide, to demonstrate the unique

usage of flat space in representing multi-dimensional information. The subtle

blending used in this image produces an understated watercolor e↵ect when ap-

plied to new content images, smoothing the image without changing its structure.

• Cattle, by Charles Minard: Much of Minard’s work articulates patterns in the

transportation of people and products. This particular image details the amount

of cattle sent to Paris from various parts of France in 1858 [32]. We cropped out

a part of the entire map visualization to capture specific features of interest. The
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color di↵erence between the base map and pie charts used in the visualization are

captured by our feature extractor, leading to the drawing of dark circular areas

over high frequency image content.

• Immigration, by Charles Minard: Another flow visualization by Minard, this piece

highlights worldwide immigration in 1858, approximating people’s origin and des-

tination countries [32]. The antique map texture produced a sketchbook like e↵ect

when this brush was used to style images.

These pieces represent a breadth and evolution of data interpretation in the

visualization community, and encode various levels of complexity in artifactual genera-

tion. The selected pieces are not meant to be a comprehensive representation of data

visualization, however provide good variance in data content and visual style.
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Part III

Discussion and Analysis
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Chapter 5

Evaluation

The current version of Data Brushes was developed over a 10 month period,

beginning in January 2019. During the development process, discussions held with

artists, visualization researchers, and data scientists were used to collect feedback on

the application and its use cases. This section summarizes two of these information

gathering sessions, and the lessons learned from them.

5.1 Expert Feedback

A previous version of the Data Brushes application was presented at a Data

Science Symposium held at University of California, Santa Cruz in early May 2019,

with over 350 attendees, including faculty, graduate students, and data science experts

from industry and research labs. An overview of the system architecture was presented

alongside a range of example outputs. While participants were intrigued by the results, a

repeatedly voiced concern was that the work was di�cult to evaluate, as the application
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is made to support the creative process, rather than to measure outputs against other

style transfer techniques. The discussions with participants on the practicality and

purpose of assessing creative support tools helped articulate that the project is a tool

for evaluation rather than producing images to be evaluated, and that the outputs

of Data Brushes function as a form of feature visualization themselves [7]. Another

common thread in the feedback received was the interest in the use of data visualization

pieces as inputs to the style networks, and it was validating to see an audience gain

an appreciation for data visualization as a viable bridge between machine learning and

creative arts.

5.2 User Study

Following the presentation at the Data Science Symposium, an audience of

non-experts was selected for a study aimed at understanding how casual creators would

interact with the application. An observational pilot study was conducted to investigate

a user’s ability to develop insight into the behavior of style transfer networks through

the usage of Data Brushes.

The application focuses less on trying to generate an accurate or optimal style

transfer algorithm, and more on the user experience itself. Since Data Brushes helps

users make their own assessments of style brushes, it was interesting to recognize the

insights that such users developed through the assisted interactive experience of the

application. The pilot study was set up with 7 volunteers, in which each subject was
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Figure 5.1: Examples of outputs created by users in our pilot study, using the magic
marker mode for a single target image. One user (bottom) has generated a grid of all
pairs of style brushes in order to characterize their interactions.

screen-recorded completing an unguided session of between 10 and 20 minutes of ap-

plication exploration using the magic markers mode, followed by a short online survey

that was filled out anonymously. Each user spent an additional 20 minutes completing

the survey, and had access to the application during that time, in case they wished to

revisit a particular aspect before finalizing an answer. Comments were collected indi-

cating how users perceived the ease of use of the application, as well as remarks that
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Figure 5.2: When asked to choose their favorite brushes, Data Items, Flatland, and
Scrapbook 1 were selected the most. The original style image is shown on the left of the
main image, which has been styled by each brush respectively.

described how users interpreted the behavior of each data brush. The screen record-

ings of these interactions and the surveys were used to provide insight into the user

experience, as well as to guide future plans for development of the application.

Fig. 5.1 presents 3 examples of the outputs created during the exploration ses-

sions, in which participants were given a default target image and a selection of style

transfer brushes. Given their freedom to layer brushes as they wished, it is interest-

ing to note the di↵erent ways in which participants chose to combine all brushes for

comparisons. Overall, the participants, all of who were new to neural style transfer,

preferred the e↵ects produced by brushes that generated a greater variance in patterns,

as seen in Fig. 5.2, despite the fact that the use of these brushes were the most likely to

obscure the underlying structural features of the target image. The primary reasoning

provided for the preferences of these brushes was that they introduced more dramatic

and unusual shapes and colors into the image, with one user explaining that “each of
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Figure 5.3: Users were asked to rank each data brush on a scale of 1 to 5 for pattern
generation (1 representing the least variance in pattern generation and 5 representing
the most variance) and content preservation (1 being the worst content preservation
and 5 being the best). There is a visible correlation learned by our subjects between the
variance in pattern generation and the ability of each brush to best preserve underlying
content. We order the brush thumbnails in order, displaying the one which was most
given that rank, and also show the average rank given to each of the brush.

these brushes has a distinctive style and character over and above the underlying image

itself.”

The survey was used to gauge the intuition developed through interaction

with Data Brushes, and included questions that required users to rank brushes based

on two criteria: the variance in pattern generation, and the level of content preservation.

Fig. 5.3 summarizes the most frequent ranking provided by each user for both. Interest-

ingly, there appears to be a correlation between user interpretation of the brushes and

their ability either to generate varied patterns or to preserve the content image. This

shows an initial indication that participants are able to glean insights into the behaviour

of each brush, and provides motivation for developing further studies to investigate the

potential benefits of demystifying computational methods for novice users.
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Chapter 6

Data as Style

The development of this application generated an ongoing debate about the

role of individual artistic vision in art creation. Does an artistic process begin with

the intended content of the image and result in its ‘style?’ Does it begin with a↵or-

dances of the medium (e.g., paints of various pigment, and brushes of various texture),

and result in a ‘form?’ Or does creativity emerge precisely from the inherent tension

between the two concerns? Style transfer architectures are designed to minimize the

perceptual loss of an arbitrary image relative to a given style, transforming the content

image into a compressed vector representation that encodes the salient features of the

image [8]. By re-translating the vector representation and integrating it into another

image, this generative pipeline allows a user to make creative decisions about which im-

ages to transform, making the algorithm itself an artistic medium. By embedding this

procedure into an interactive canvas, users, even those with no knowledge of computer

programming, also have to decide where to transform their images, and engage with
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this new medium.

As programmers, we become curators of style brushes, and began to predict

the pattern of responses that source images would yield, once fitted into the connec-

tion weights of a network pre-trained on visual primitives, for di↵erent target images.

But the traditional roles of artist and curator are intertwined, because style transfer

brushes depend likewise on a choice of style image. While general color schemes and

structural motifs were reliably replicated (by the process of re-encoding a vector as

an image), the style transfer brush’s ‘opinion’ likewise depended on stroke directional-

ity (as illustrated in Fig. 3.4), contrast, and aspect ratio (Fig. 3.6) in the content image.

This instinct for the algorithm’s valuation of various image segments is what users can

hopefully take away from Data Brushes. Additionally, the aesthetic outcome of many

data visualizations make them suitable choices for style source. And this type of cre-

ative experimentation could potentially help generate new approaches to the design of

data visualization representations [14], including future style transfer applications that

could, say, transform a simple scatter plot into a more evocative representation using

interactive style brushes. We delve further into such ideas in the conclusion.

33



Chapter 7

Conclusion

Looking at future iterations of Data Brushes, there are some obvious technical

as well as interpretive areas to expand on. From an application perspective, we consider

extending the number of default brushes, and to make it easier for a user to train on

style images of their choice, which could also help to facilitate data literacy [2], or at

least provide an intuition for how features are encoded in neural style networks. A main

challenge in accomplishing these tasks is optimizing for browser constraints and the

existing bottleneck of training time, as we aim for a system that would allow immediate

training of new data brushes based on user-submitted style images. As with any image

manipulation task, style transfer is a computationally heavy process that scales with

time as the size of the input increases. Despite these challenges, how can we better

bridge the technical gap between such complex algorithms and the casual creators who

could benefit from using them? And more generally. how could we improve accessibility

for users of all experience levels for computational and algorithmic art?
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Going beyond the practical usage of the application, we can contemplate the

interdisciplinary uses that can evolve from such work. Data art is a result of aesthetic

design choices and data transformations. In Data Brushes, we focus on the visual aspects

of created pieces. However, could we develop a system that can train on the original

data sets as well in order to learn some complex visualization schematics? Could specific

brushes be created to cater to visualization needs of di↵erent domains, or perhaps could

an entire version of this application be re-created for di↵erent fields? And conversely,

could an understanding or intuition of style feature sets help inform unique data art

pieces and infographics? Neural networks are used so often in highly creative ways, but

if we can start to understand the way in which they encode features perhaps we can

recognize important patterns and choices in visualization work.

The result of experimenting with web frameworks for machine learning in an

artistic context, Data Brushes is an easy-to-use and explorable style transfer system for

users of various levels of skill and creativity, promoting availability of creative tools for

computational and algorithmic art. With this application, we move toward understand-

ing the motivations of two very di↵erent audiences: researchers and content creators.

While researchers seek to understand the mechanisms of content-aware image genera-

tion by deep convolutional networks, content creators desire a broader array of intuitive

features to author and version their work. This application aims to satisfy the needs

of both, so as to reduce the knowledge gap between the roles while promoting data vi-

sualization art, which intersects the two audiences. Providing users with the ability to

rapidly generate custom brushes will increase access to artistic algorithms, improving the
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understanding and accessibility of computational art for non-technical users. The Data

Brushes web application is available at https://github.com/CreativeCodingLab/DataBrushes,

along with source code, instructions, and video documentation.
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